PRACA PRZEGLĄDOWA
Słuchowe potencjały korowe – kliniczne zastosowanie oraz ocena przydatności w diagnostyce ośrodkowych procesów słuchowych
Rafał Milner 1  
 
Więcej
Ukryj
1
Instytut Fizjologii i Patologii Słuchu, Światowe Centrum Słuchu, Zakład Audiologii Eksperymentalnej, Warszawa/Kajetany
AUTOR DO KORESPONDENCJI
Rafał Milner   

Światowe Centrum Słuchu, Zakład Audiologii Eksperymentalnej, ul. Mokra 17, Kajetany, 05-830 Nadarzyn, e-mail: r.milner@ifps.org.pl
Data publikacji: 30-10-2020
 
Now Audiofonol 2015;4(3):9–32
 
SŁOWA KLUCZOWE
STRESZCZENIE
Słuchowe potencjały korowe (ang. cortical auditory evoked potentials, CAEP) to bioelektryczne odpowiedzi mózgu na bodźce dźwiękowe, generowane w ośrodkach nerwowych znajdujących się na wyższych piętrach analizy informacji słuchowej. Wiele dotychczas przeprowadzonych badań eksperymentalnych pokazuje, że rejestracja oraz ocena tych odpowiedzi stwarza olbrzymie możliwości w diagnostyce audiologicznej oraz innych dziedzinach nauki, w których konieczne bądź potrzebne jest sprawdzenie stanu funkcjonalnego ośrodków mózgowych i procesów związanych z przetwarzaniem bodźców dźwiękowych. Niniejsza praca zawiera przegląd najczęściej opisywanych w literaturze sensorycznych (egzogennych) oraz związanych ze zdarzeniem (endogennych) składowych słuchowych potencjałów korowych oraz przykłady klinicznego zastosowania tych komponentów w ocenie i diagnostyce ośrodkowych procesów słuchowych oraz związanych z nimi procesów poznawczych i językowych.
FINANSOWANIE
Artykuł powstał w związku z realizacją projektu „Zintegrowany system narzędzi do diagnostyki i telerehabilitacji schorzeń narządów zmysłów (słuchu, wzroku, mowy, równowagi, smaku, powonienia)” współfinansowanego przez Narodowe Centrum Badań i Rozwoju w ramach Programu STRATEGMED.
 
REFERENCJE (215)
1.
Stapells DR. Cortical event-related potentials to auditory stimuli. W: Katz J, red. Handbook of clinical audiology. 5th ed., Philadelphia: Lippincott Williams & Wilkins; 2002, s. 378–406.
 
2.
Martin BA, Tremblay KL, Stapells DR. Principles and applications of cortical auditory evoked potentials. W: Burkard RF, Don M, Eggermont JJ, red. Auditory evoked potentials: basic principles and clinical application. Philadelphia: Lippincott Williams & Wilkins; 2007, s. 482–507.
 
3.
McPherson DL, Ballachanda BB. Middle and long latency auditory evoked potentials. W: Roester RJ, Valente M, Hosford-Dunn H, red. Audiology: diagnosis. New York: Thieme; 2007, s. 443–78.
 
4.
Knight RT, Scabini D, Woods DL, Clayworth C. The effects of lesions of superior temporal gyrus and inferior parietal lobe on temporal and vertex components of the human AEP. Electroencephalogr Clin Neurophysiol, 1988; 70(6): 499–509.
 
5.
Squires NK, Squires KC, Hillyard SA. Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalogr Clin Neurophysiol, 1975; 38(4): 387–401.
 
6.
Luck SJ. An introduction to the event-related potential technique. Cambridge Massachusetts: The MIT Press; 2005.
 
7.
Jaśkowski P. Zarys psychofizjologii. Warszawa: Wyższa Szkoła Finansów i Zarządzania; 2004.
 
8.
Näätänen R, Picton T. The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology, 1987; 24(4): 375–425.
 
9.
Crowley KE, Colrain IM. A review of the evidence for P2 being an independent component process: age, sleep and modality. Clin Neurophysiol Off J Int Fed Clin Neurophysiol, 2004; 115(4): 732–44.
 
10.
Scherg M, Vajsar J, Picton T. A source analysis of the late human auditory evoked potentials. J Cogn Neurosci, 1989; 1(4): 336–55.
 
11.
Rif J, Hari R, Hämäläinen MS, Sams M. Auditory attention affects two different areas in the human supratemporal cortex. Electroencephalogr Clin Neurophysiol, 1991; 79(6): 464–72.
 
12.
Oades RD, Dittmann-Balcar A, Zerbin D. Development and topography of auditory event-related potentials (ERPs): mismatch and processing negativity in individuals 8–22 years of age. Psychophysiology, 1997; 34(6): 677–93.
 
13.
Ponton CW, Eggermont JJ, Kwong B, Don M. Maturation of human central auditory system activity: evidence from multi-channel evoked potentials. Clin Neurophysiol, 2000; 111(2): 220–36.
 
14.
Vaughan HG, Ritter W, Simson R. Topographic analysis of auditory event-related potentials. Prog Brain Res, 1980; 54: 279–85.
 
15.
Hari R, Aittoniemi K, Järvinen M-L, Katila T, Varpula T. Auditory evoked transient and sustained magnetic fields of the human brain localization of neural generators. Exp Brain Res, 1980; 40(2): 237–40.
 
16.
Scherg M, Cramon D Von. Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model. Electroencephalogr Clin Neurophysiol Potentials Sect, 1985; 62(1): 32–44.
 
17.
Wood CC, Wolpaw JR. Scalp distribution of human auditory evoked potentials II Evidence for overlapping sources and involvement of auditory cortex. Electroencephalogr Clin Neurophysiol, 1982; 54(1): 25–38.
 
18.
Grillon C, Ameli R. Methods of affective clinical psychophysiology. W: Charney DS, Nestler EJ, red. Neurobiology of Mental Illness. New York: Oxford University Press; 2004, s. 127–41.
 
19.
Martin BA, Kurtzberg D, Stapells DR. The effects of decreased audibility produced by high-pass noise masking on N1 and the mismatch negativity to speech sounds/ba/and/da. J Speech Lang Hear Res, 1999; 42(2): 271–86.
 
20.
Arkadiusz Rojczyk. Parametr VOT w języku polskim i angielskim. Badanie Percepcji LingVaria IV 1, 2009: 29–47.
 
21.
Tremblay KL, Shahin AJ, Picton T, Ross B. Auditory training alters the physiological detection of stimulus-specific cues in humans. Clin Neurophysiol, 2009; 120(1): 128–35.
 
22.
Voice-onset time. Wikipedia Free Encycl, 2014. https://en.wikipedia.org/wiki/....
 
23.
Luck SJ, Kappenman ES. The Oxford Handbook of Event-Related Potential Components. Oxford University Press; 2012.
 
24.
Milner R. Słuchowe potencjały korowe. Część II. Teoretyczne podstawy generacji oraz charakterystyka wybranych komponentów. Nowa Audiofonologia, 2015; 4(2): 28–42.
 
25.
Milner R. Słuchowe potencjały korowe. Część I. Klasyfikacja oraz wybrane techniczne aspekty rejestracji odpowiedzi. Nowa Audiofonologia, 2015; 4(2): 17–27.
 
26.
Näätänen R, Paavilainen P, Rinne T, Alho K. The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clin Neurophysiol, 2007; 118(12): 2544–90.
 
27.
Picton TW: Auditory evoked potentials. W: Daly DD, Pedley TA, red. 2nd ed. Current Practice of Clinical Electroencephalography. New York: Raven Press; 1990, s. 625–78.
 
28.
Alho K. Cerebral generators of mismatch negativity (MMN) and its magnetic counterpart (MMNm) elicited by sound changes. Ear Hear, 1995; 16(1): 38–51.
 
29.
Näätänen R, Paavilainen P, Alho K, Reinikainen K, Sams M. The mismatch negativity to intensity changes in an auditory stimulus sequence. Electroencephalogr Clin Neurophysiol Suppl, 1987; 40: 125–31.
 
30.
Joutsiniemi S-L, Ilvonen T, Sinkkonen J, Huotilainen M, Tervaniemi M, Lehtokoski A i wsp. The mismatch negativity for duration decrement of auditory stimuli in healthy subjects. Electroencephalogr Clin Neurophysiol Potentials Sect, 1998; 108(2): 154–59.
 
31.
Näätänen R, Jiang D, Lavikainen J, Reinikainen K, Paavilainen P. Event-related potentials reveal a memory trace for temporal features. NeuroReport, 1993; 5(3): 310–12.
 
32.
Näätänen R, Alho K. Mismatch negativity – the measure for central sound representation accuracy. Audiol Neurootol, 1997; 2(5): 341–53.
 
33.
Folstein JR, Petten C Van. Influence of cognitive control and mismatch on the N2 component of the ERP: a review. Psychophysiology, 2008; 45(1): 152–70.
 
34.
Patel SH, Azzam PN. Characterization of N200 and P300: selected studies of the event-related potential. Int J Med Sci, 2005; 2(4): 147–54.
 
35.
Näätänen R, Gaillard AWK. The orienting reflex and the N2 deflection of the event-related potential (ERP). Adv Psychol, 1983; 10: 119–41.
 
36.
Sutton S, Braren M, Zubin J, John ER. Evoked-potential correlates of stimulus uncertainty. Science, 1965; 150(3700): 1187–88.
 
37.
Kok A. On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology, 2001; 38(3): 557–77.
 
38.
Polich J, Kok A. Cognitive and biological determinants of P300: an integrative review. Biol Psychol, 1995; 41(2): 103–46.
 
39.
Kida T, Nishihira Y, Hatta A, Wasaka T, Tazoe T, Sakajiri Y i wsp. Resource allocation and somatosensory P300 amplitude during dual task: effects of tracking speed and predictability of tracking direction. Clin Neurophysiol, 2004; 115(11): 2616–28.
 
40.
Polich J. Theoretical overview of P3a and P3b. W: Polich J, red. Detection of change. Springer; 2003, s. 83–98.
 
41.
Buchwald JS. Animal models of cognitive event-related potentials. W: Event-related potentials of the brain. New York: Oxford University Press; 1990, s. 57–75.
 
42.
Buchwald JS. Comparison of plasticity in sensory and cognitive processing systems. Clin Perinatol, 1990; 17(1): 57–66.
 
43.
Donchin E. Presidential address, 1980 Surprise! Surprise? Psychophysiology, 1981; 18(5): 493–513.
 
44.
Donchin E, Coles MGH. Is the P300 component a manifestation of context updating? Behav Brain Sci, 1988; 11(03): 357–74.
 
45.
Verleger R. Event-related potentials and cognition: A critique of the context updating hypothesis and an alternative interpretation of P3. Behav Brain Sci, 1988; 11(3): 343–56.
 
46.
Polich J. Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol Off J Int Fed Clin Neurophysiol, 2007; 118(10): 2128–48.
 
47.
Verleger R. On the utility of P3 latency as an index of mental chronometry. Psychophysiology, 1997; 34(2): 131–56.
 
48.
Kutas M, Federmeier KD. Thirty years and counting: Finding meaning in the N400 component of the event-related brain potential (ERP). Annu Rev Psychol, 2011; 62(1): 621–47.
 
49.
Näätänen R. Attention and brain function. Psychology Press; 1992.
 
50.
Picton TW. The P300 wave of the human event-related potential. J Clin Neurophysiol, 1992; 9(4): 456–79.
 
51.
Verleger R, Jaśkowski P, Wascher E. Evidence for an integrative role of P3b in linking reaction to perception. J Psychophysiol, 2005; 19(3): 165–81.
 
52.
Coles MG, Smid HG, Scheffers MK, Otten LJ. Mental chronometry and the study of human information processing. W: Rugg MD, Coles MGH, red. Electrophysiology of mind: event-related brain potentials and cognition. New York: Oxford University Press, 1995; s. 86–131.
 
53.
Senderski A. Potencjały związane ze zdarzeniem (ERP) – obiektywne narzędzie do oceny procesu rozumienia mowy. Audiofonologia, 2005; 27: 11–8.
 
54.
Kutas M, Hillyard SA. Brain potentials during reading reflect word expectancy and semantic association. Nature, 1984; 307: 161–63.
 
55.
Connolly JF, Phillips NA, Stewart SH, Brake WG. Event-related potential sensitivity to acoustic and semantic properties of terminal words in sentences. Brain Lang, 1992; 43(1): 1–18.
 
56.
Haan H, Streb J, Bien S, Rösler F. Individual cortical current density reconstructions of the semantic N400 effect: using a generalized minimum norm model with different constraints (L1 and L2 norm). Hum Brain Mapp, 2000; 11(3): 178–92.
 
57.
Kutas M, Hillyard SA. Reading senseless sentences: Brain potentials reflect semantic incongruity. Science, 1980; 207(4427): 203–5.
 
58.
McPherson DL. Long latency auditory evoked potentials. W: McPherson DL, red. Late potentials of the auditory system. New York: Singular Publishing Group; 1996; s. 7–21.
 
59.
Rugg MD. Event-related potentials and the phonological processing of words and non-words. Neuropsychologia, 1984; 22(4): 435–43.
 
60.
Radeau M, Besson M, Fonteneau E, Castro SL. Semantic, repetition and rime priming between spoken words: behavioral and electrophysiological evidence. Biol Psychol, 1998; 48(2): 183–204.
 
61.
Kim M, Kim J, Kwon JS. The effect of immediate and delayed word repetition on event-related potential in a continuous recognition task. Brain Res Cogn Brain Res, 2001; 11(3): 387–96.
 
62.
Hahne A, Friederici AD. Differential task effects on semantic and syntactic processes as revealed by ERPs. Cogn Brain Res, 2002; 13(3): 339–56.
 
63.
McCarthy G, Nobre AC. Modulation of semantic processing by spatial selective attention. Electroencephalogr Clin Neurophysiol, 1993; 88(3): 210–19.
 
64.
Cone-Wesson B, Wunderlich J. Auditory evoked potentials from the cortex: audiology applications. Curr Opin Otolaryngol Head Neck Surg, 2003; 11(5): 372–77.
 
65.
Hamburger HL, Triantafyllou NI. Clinical applications of auditory event related potentials in neurology. Brain Topogr, 1990; 3(1): 49–52.
 
66.
Pfefferbaum A, Wenegrat BG, Ford JM, Roth WT, Kopell BS. Clinical application of the P3 component of event-related potentials II Dementia, depression and schizophrenia. Electroencephalogr Clin Neurophysiol Potentials Sect, 1984; 59(2): 104–24.
 
67.
Wang J, Miyazato H, Randall M, Hokama H, Hiramatsu K-I, Ogura C. The N200 abnormalities of auditory event-related potentials in patients with panic disorder. Prog Neuropsychopharmacol Biol Psychiatry, 2003; 27(6): 1013–21.
 
68.
Tomé D, Sampaio M, Mendes-Ribeiro J, Barbosa F, Marques-Teixeira J. Auditory event-related potentials in children with benign epilepsy with centro-temporal spikes. Epilepsy Res, 2014; 108(10): 1945–49.
 
69.
Lew HL, Gray M, Poole JH. Simultaneous measurement of perceptual and motor cortical potentials: implications for assessing information processing in traumatic brain injury. Am J Phys Med Rehabil Assoc Acad Physiatr, 2009; 88(1): 1–6.
 
70.
Risetti M, Formisano R, Toppi J, Quitadamo LR, Bianchi L, Astolfi L i wsp. On ERPs detection in disorders of consciousness rehabilitation. Front Hum Neurosci, 2013; 7: 775.
 
71.
Hernández OH, García-Martínez R, Monteón V. Alcohol effects on the P2 component of auditory evoked potentials. An Acad Bras Ciênc, 2014; 86(1): 437–49.
 
72.
Howe AS, Bani-Fatemi A, Luca V De. The clinical utility of the auditory P300 latency subcomponent event-related potential in preclinical diagnosis of patients with mild cognitive impairment and Alzheimer’s disease. Brain Cogn, 2014; 86: 64–74.
 
73.
Vecchio F, Määttä S. The Use of Auditory Event-Related Potentials in Alzheimer`s Disease Diagnosis. Int J Alzheimer’s Dis, 2011: e653173.
 
74.
Martin BA, Boothroyd A. Cortical, auditory, event-related potentials in response to periodic and aperiodic stimuli with the same spectral envelope. Ear Hear, 1999; 20(1): 33–44.
 
75.
Whiting KA, Martin BA, Stapells DR. The effects of broadband noise masking on cortical event-related potentials to speech sounds /ba/ and /da/. Ear Hear, 1998; 19(3): 218–31.
 
76.
Jirsa RE, Clontz KB. Long latency auditory event-related potentials from children with auditory processing disorders. Ear Hear, 1990; 11(3): 222–32.
 
77.
Goodin DS. Clinical utility of long latency „cognitive” event-related potentials (P3): the pros. Electroencephalogr Clin Neurophysiol, 1990; 76(1): 2–5; discussion 1.
 
78.
Coch D, Holcomb PJ. The N400 in beginning readers. Dev Psychobiol, 2003; 43(2): 146–66.
 
79.
Appleby SV, McDermick P, Scott JW. The sound evoked cerebral response as a test of hearing. Electroencephalogr Clin Neurophysiol, 1963; 15: 370–75.
 
80.
Cone B, Whitaker R. Dynamics of infant cortical auditory evoked potentials (CAEPs) for tone and speech tokens. Int J Pediatr Otorhinolaryngol, 2013; 77(7): 1162–73.
 
81.
Rose DE, Keating LW, Hedgecock LD, Miller KE, Schreurs KK. A comparison of evoked response audiometry and routine clinical audiometry. Audiol Off Organ Int Soc Audiol, 1972; 11(3): 238–43.
 
82.
Rapin I. Evoked responses to clicks in a group of children with communication disorders. Ann N Y Acad Sci, 1964; 112: 182–203.
 
83.
Prevec TS, Cernelc S, Ribaric K. Evoked cerebral potential audiometry and hearing threshold. Audiol Off Organ Int Soc Audiol, 1976; 15(1): 39–49.
 
84.
Rapin I, Schimmel H, Cohen MM. Reliability in detecting the auditory evoked response (AER) for audiometry in sleeping subjects. Electroencephalogr Clin Neurophysiol, 1972; 32(5): 521–28.
 
85.
Kraus N, McGee T, Carrell TD, Sharma A. Neurophysiologic bases of speech discrimination. Ear Hear, 1995; 16(1): 19–37.
 
86.
Martin BA. Can the acoustic change complex be recorded in an individual with a cochlear implant? Separating neural responses from cochlear implant artifact. J Am Acad Audiol, 2007; 18(2): 126–40.
 
87.
Formant. Wikipedia Free Encycl, 2015, https://en.wikipedia.org/wiki/....
 
88.
Reite M, Teale P, Zimmerman J, Davis K, Whalen J. Source location of a 50 msec latency auditory evoked field component. Electroencephalogr Clin Neurophysiol, 1988; 70(6): 490–8.
 
89.
Vasama JP, Mäkelä JP, Parkkonen L, Hari R. Auditory cortical responses in humans with congenital unilateral conductive hearing loss. Hear Res, 1994; 78(1): 91–97.
 
90.
Tecchio F, Bicciolo G, Campora E De, Pasqualetti P, Pizzella V, Indovina I i wsp. Tonotopic cortical changes following stapes substitution in otosclerotic patients: a magnetoencephalographic study. Hum Brain Mapp, 2000; 10(1): 28–38.
 
91.
Ceponiene R, Haapanen M-L, Ranta R, Näätänen R, Hukki J. Auditory sensory impairment in children with oral clefts as indexed by auditory event-related potentials. J Craniofac Surg, 2002; 13(4): 554–66; discussion 567.
 
92.
Vasama JP, Mäkelä JP, Pyykkö I, Hari R. Abrupt unilateral deafness modifies function of human auditory pathways. Neuroreport, 1995; 6(7): 961–64.
 
93.
Ponton CW, Don M, Eggermont JJ, Waring MD, Masuda A. Maturation of human cortical auditory function: differences between normal-hearing children and children with cochlear implants. Ear Hear, 1996; 17(5): 430–37.
 
94.
Korczak PA, Kurtzberg D, Stapells DR. Effects of sensorineural hearing loss and personal hearing aids on cortical event-related potential and behavioral measures of speech-sound processing. Ear Hear, 2005; 26(2): 165–85.
 
95.
Tremblay KL, Billings CJ, Friesen LM, Souza PE. Neural representation of amplified speech sounds. Ear Hear, 2006; 27(2): 93–103.
 
96.
Rapin I, Graziani LJ. Auditory-evoked responses in normal, brain-damaged, and deaf infants. Neurology, 1967; 17(9): 881–94.
 
97.
Stapells DR, Kurtzberg D. Evoked potential assessment of auditory system integrity in infants. Clin Perinatol, 1991; 18(3): 497–518.
 
98.
Billings CJ, Bennett KO, Molis MR, Leek MR. Cortical encoding of signals in noise: effects of stimulus type and recording paradigm. Ear Hear, 2011; 32(1): 53–60.
 
99.
Ponton CW, Don M, Waring MD, Eggermont JJ, Masuda A. Spatio-temporal source modeling of evoked potentials to acoustic and cochlear implant stimulation. Electroencephalogr Clin Neurophysiol Potentials Sect, 1993; 88(6): 478–93.
 
100.
Firszt JB, Chambers RD, Kraus N. Neurophysiology of cochlear implant users II: comparison among speech perception, dynamic range, and physiological measures. Ear Hear, 2002; 23(6): 516–31.
 
101.
Groenen PAP, Makhdoum M, Brink JL Van Den, Stollman MHP, Snik AFM, Broek P Van Den. The relation between electric auditory brain stem and cognitive responses and speech perception in cochlear implant users. Acta Otolaryngol (Stockh), 1996; 116(2): 785–90.
 
102.
Maurer J, Collet L, Pelster H, Truy E, Gallégo S. Auditory late cortical response and speech recognition in digisonic cochlear implant users. The Laryngoscope, 2002; 112(12): 2220–4.
 
103.
Friesen LM, Tremblay KL. Acoustic change complexes recorded in adult cochlear implant listeners. Ear Hear, 2006; 27(6): 678–85.
 
104.
Eilers RE, Cobo-Lewis AB, Vergara KC, Oller DK. Longitudinal speech perception performance of young children with cochlear implants and tactile aids plus hearing aids. Scand Audiol Suppl, 1997; 47: 50–54.
 
105.
Ponton C, Eggermont J, Don M, Waring M, Kwong B, Cunningham J i wsp. Maturation of the mismatch negativity: effects of profound deafness and cochlear implant use. Audiol Neurootol, 2000; 5(3–4): 167–85.
 
106.
Sharma A, Martin K, Roland P, Bauer P, Sweeney MH, Gilley P i wsp. P1 latency as a biomarker for central auditory development in children with hearing impairment. J Am Acad Audiol, 2005; 16(8): 564–73.
 
107.
Hyde M. The N1 response and its applications. Audiol Neurotol, 1997; 2(5): 281–307.
 
108.
Tremblay K, Kraus N, McGee T, Ponton C, Otis B. Central auditory plasticity: changes in the N1-P2 complex after speech-sound training. Ear Hear, 2001; 22(2): 79–90.
 
109.
Atienza M, Cantero JL, Dominguez-Marin E. The time course of neural changes underlying auditory perceptual learning. Learn Mem, 2002; 9(3): 138–50.
 
110.
Tremblay K, Kraus N, McGee T. The time course of auditory perceptual learning: neurophysiological changes during speech-sound training. Neuroreport, 1998; 9(16): 3557–60.
 
111.
Desjardins RN, Trainor LJ, Hevenor SJ, Polak CP. Using mismatch negativity to measure auditory temporal resolution thresholds. Neuroreport, 1999; 10(10): 2079–82.
 
112.
Rupp A, Gutschalk A, Hack S, Scherg M. Temporal resolution of the human primary auditory cortex in gap detection. Neuroreport, 2002; 13(17): 2203–7.
 
113.
Uther M, Jansen DHJ, Huotilainen M, Ilmoniemi RJ, Näätänen R. Mismatch negativity indexes auditory temporal resolution: evidence from event-related potential (ERP) and event-related field (ERF) recordings. Cogn Brain Res, 2003; 17(3): 685–91.
 
114.
Ungan P, Erar H, Oztürk N, Ozmen B. Human long-latency potentials evoked by monaural interruptions of a binaural click train: connection to sound lateralization based on interaural intensity differences. Audiol Off Organ Int Soc Audiol, 1992; 31(6): 318–33.
 
115.
Wedel H von, Wedel UC von, Streppel M. Monaural and binaural time resolution ability in the aged A psychoacoustic and electrophysiological study. Acta Oto-Laryngol Suppl, 1990; 476: 161–66.
 
116.
Bekhterev NN, Vaitulevich SF, Nikitin NI, Shestopalova LB. Comparison of binaural release from forward masking in animals and humans Electrophysiological studies. Neurosci Behav Physiol, 2002; 32(1): 71–79.
 
117.
Fishman YI, Reser DH, Arezzo JC, Steinschneider M. Neural correlates of auditory stream segregation in primary auditory cortex of the awake monkey. Hear Res, 2001; 151(1): 167–87.
 
118.
Kraus N, Bradlow AR, Cheatham MA, Cunningham J, King CD, Koch DB i wsp. Consequences of neural asynchrony: A case of auditory neuropathy. J Assoc Res Otolaryngol, 2000; 1(1): 33–45.
 
119.
Hayes EA, Warrier CM, Nicol TG, Zecker SG, Kraus N. Neural plasticity following auditory training in children with learning problems. Clin Neurophysiol, 2003; 114(4): 673–84.
 
120.
Warrier C, Johnson K, Hayes E, Nicol T, Kraus N. Learning impaired children exhibit timing deficits and training-related improvements in auditory cortical responses to speech in noise. Exp Brain Res, 2004; 157(4): 431–41.
 
121.
Reinke KS, He Y, Wang C, Alain C. Perceptual learning modulates sensory evoked response during vowel segregation. Cogn Brain Res, 2003; 17(3): 781–91.
 
122.
Trainor LJ, Shahin A, Roberts LE. Effects of musical training on the auditory cortex in children. Ann N Y Acad Sci, 2003; 999(1): 506–13.
 
123.
Näätänen R. Mismatch negativity (MMN): perspectives for application. Int J Psychophysiol, 2000; 37(1): 3–10.
 
124.
Yago E, Corral MJ, Escera C. Activation of brain mechanisms of attention switching as a function of auditory frequency change. Neuroreport, 2001; 12(18): 4093–97.
 
125.
Yago E, Escera C, Alho K, Giard M-H. Cerebral mechanisms underlying orienting of attention towards auditory frequency changes. Neuroreport, 2001; 12(11): 2583–87.
 
126.
Sambeth A, Huotilainen M, Kushnerenko E, Fellman V, Pihko E. Newborns discriminate novel from harmonic sounds: A study using magnetoencephalography. Clin Neurophysiol, 2006; 117(3): 496–503.
 
127.
Näätänen R, Gaillard AW, Mäntysalo S. Early selective-attention effect on evoked potential reinterpreted. Acta Psychol (Amst), 1978; 42(4): 313–29.
 
128.
Kisley MA, Noecker TL, Guinther PM. Comparison of sensory gating to mismatch negativity and self-reported perceptual phenomena in healthy adults. Psychophysiology, 2004; 41(4): 604–12.
 
129.
Novitski N, Tervaniemi M, Huotilainen M, Näätänen R. Frequency discrimination at different frequency levels as indexed by electrophysiological and behavioral measures. Cogn Brain Res, 2004; 20(1): 26–36.
 
130.
Sonnadara RR, Alain C, Trainor LJ. Effects of spatial separation and stimulus probability on the event-related potentials elicited by occasional changes in sound location. Brain Res, 2006; 1071(1): 175–85.
 
131.
Sonnadara RR, Alain C, Trainor LJ. Occasional changes in sound location enhance middle latency evoked responses. Brain Res, 2006; 1076(1): 187–92.
 
132.
Todd J, Michie PT. Do perceived loudness cues contribute to duration mismatch negativity (MMN)? Neuroreport, 2000; 11(17): 3771–74.
 
133.
Lyytinen H, Blomberg AP, Näätänen R. Event-related potentials and autonomic responses to a change in unattended auditory stimuli. Psychophysiology, 1992; 29(5): 523–34.
 
134.
Sable JJ, Gratton G, Fabiani M. Sound presentation rate is represented logarithmically in human cortex. Eur J Neurosci, 2003; 17(11): 2492–96.
 
135.
Kujala T, Karma K, Ceponiene R, Belitz S, Turkkila P, Tervaniemi M i wsp. Plastic neural changes and reading improvement caused by audiovisual training in reading-impaired children. Proc Natl Acad Sci, 2001; 98(18): 10509–14.
 
136.
Shestakova A, Brattico E, Huotilainen M, Galunov V, Soloviev A, Sams M i wsp. Abstract phoneme representations in the left temporal cortex: magnetic mismatch negativity study. Neuroreport, 2002; 13(14): 1813–16.
 
137.
Dehaene-Lambertz G, Baillet S. A phonological representation in the infant brain. NeuroReport, 1998; 9(8): 1885–88.
 
138.
Vuust P, Pallesen KJ, Bailey C, Zuijen TL van, Gjedde A, Roepstorff A i wsp. To musicians, the message is in the meter: Pre-attentive neuronal responses to incongruent rhythm are left-lateralized in musicians. NeuroImage, 2005; 24(2): 560–64.
 
139.
Shtyrov Y, Pulvermüller F, Näätänen R, Ilmoniemi RJ. Grammar processing outside the focus of attention: an MEG study. J Cogn Neurosci, 2003; 15(8): 1195–206.
 
140.
Lang H, Nyrke T, Ek M, Aaltonen O, Raimo I, Näätänen R. Pitch discrimination performance and auditory event-related potentials. W: Brunia CHM, Gaillard AWK, Kok A, Mulder G, Verbaten MM, red. Psychophysiological brain research. Tilburg: Tilburg University Press; 1990, s. 294–98.
 
141.
Mäntysalo S, Näätänen R. The duration of a neuronal trace of an auditory stimulus as indicated by event-related potentials. Biol Psychol, 1987; 24(3): 183–95.
 
142.
Böttcher-Gandor C, Ullsperger P. Mismatch negativity in event-related potentials to auditory stimuli as a function of varying interstimulus interval. Psychophysiology, 1992; 29(5): 546–50.
 
143.
Sams M, Hari R, Rif J, Knuutila J. The human auditory sensory memory trace persists about 10 sec: neuromagnetic evidence. J Cogn Neurosci, 1993; 5(3): 363–70.
 
144.
Jääskeläinen IP, Hautamäki M, Näätänen R, Ilmoniemi RJ. Temporal span of human echoic memory and mismatch negativity: revisited. Neuroreport, 1999; 10(6): 1305–8.
 
145.
Pekkonen E, Rinne T, Reinikainen K, Kujala T, Alho K, Näätänen R. Aging effects on auditory processing: an event-related potential study. Exp Aging Res, 1996; 22(2): 171–84.
 
146.
Cowan N. On short and long auditory stores. Psychol Bull, 1984; 96(2): 341–70.
 
147.
Winkler I, Cowan N. From sensory to long-term memory: evidence from auditory memory reactivation studies. Exp Psychol, 2005; 52(1): 3–20.
 
148.
Winkler I, Kujala T, Alku P, Näätänen R. Language context and phonetic change detection. Cogn Brain Res, 2003; 17(3): 833–44.
 
149.
Grau C, Polo MD, Yago E, Gual A, Escera C. Auditory sensory memory as indicated by mismatch negativity in chronic alcoholism. Clin Neurophysiol Off J Int Fed Clin Neurophysiol, 2001; 112(5): 728–31.
 
150.
Polo MD, Escera C, Gual A, Grau C. Mismatch negativity and auditory sensory memory in chronic alcoholics. Alcohol Clin Exp Res, 1999; 23(11): 1744–50.
 
151.
Pekkonen E, Jousmäki V, Könönen M, Reinikainen K, Partanen J. Auditory sensory memory impairment in Alzheimer’s disease: an event-related potential study. Neuroreport, 1994; 5(18): 2537–40.
 
152.
Pekkonen E. Mismatch negativity in aging and in Alzheimer’s and Parkinson’s diseases. Audiol Neurootol, 2000; 5(3–4): 216–24.
 
153.
Giard MH, Perrin F, Pernier J, Bouchet P. Brain generators implicated in the processing of auditory stimulus deviance: a topographic event-related potential study. Psychophysiology, 1990; 27(6): 627–40.
 
154.
Schröger E. A neural mechanism for involuntary attention shifts to changes in auditory stimulation. J Cogn Neurosci, 1996; 8(6): 527–39.
 
155.
Alho K, Escera C, Díaz R, Yago E, Serra JM. Effects of involuntary auditory attention on visual task performance and brain activity. Neuroreport, 1997; 8(15): 3233–37.
 
156.
Schröger E. The influence of stimulus intensity and inter-stimulus interval on the detection of pitch and loudness changes. Electroencephalogr Clin Neurophysiol, 1996; 100(6): 517–26.
 
157.
Jankowiak S, Berti S. Behavioral and event-related potential distraction effects with regularly occurring auditory deviants. Psychophysiology, 2007; 44(1): 79–85.
 
158.
Ford JM, Roth WT, Kopell BS. Attention effects on auditory evoked potentials to infrequent events. Biol Psychol, 1976; 4(1): 65–77.
 
159.
Wang J, Friedman D, Ritter W, Bersick M. ERP correlates of involuntary attention capture by prosodic salience in speech. Psychophysiology, 2005; 42(1): 43–55.
 
160.
Ranganath C, Rainer G. Neural mechanisms for detecting and remembering novel events. Nat Rev Neurosci, 2003; 4(3): 193–202.
 
161.
Sokolov EN, Spinks JA, Näätänen R, Lyytinen H. The orienting response in information processing. New York: Lawrence Erlbaum Associates Publishers; 2002.
 
162.
Jääskeläinen IP, Pekkonen E, Hirvonen J, Sillanaukee P, Näätänen R. Mismatch negativity subcomponents and ethyl alcohol. Biol Psychol, 1996; 43(1): 13–25.
 
163.
Dehaene-Lambertz G. Electrophysiological correlates of categorical phoneme perception in adults. Neuroreport, 1997; 8(4): 919–24.
 
164.
Sharma A, Dorman MF. Cortical auditory evoked potential correlates of categorical perception of voice-onset time. J Acoust Soc Am, 1999; 106(2): 1078–83.
 
165.
Szymanski MD, Yund EW, Woods DL. Phonemes, intensity and attention: differential effects on the mismatch negativity (MMN). J Acoust Soc Am, 1999; 106(6): 3492–505.
 
166.
Cheour M, Ceponiene R, Lehtokoski A, Luuk A, Allik J, Alho K i wsp. Development of language-specific phoneme representations in the infant brain. Nat Neurosci, 1998; 1(5): 351–53.
 
167.
Winkler I, Kujala T, Tiitinen H, Sivonen P, Alku P, Lehtokoski A i wsp. Brain responses reveal the learning of foreign language phonemes. Psychophysiology, 1999; 36(5): 638–42.
 
168.
Näätänen R, Celesia G, Hashimoto I, Kakigi R: Phoneme representations of the human brain as reflected by event-related potentials. W: Hasihimoto I, Kakigi R, Gastone GC, Barber C, red. Functional Neuroscience: Evoked potentials and magnetic fields: the 6th International Evoked Potentials Symposium, Electroencephalography and clinical neurophysiology. Supplement EEG Journal Suppl.; 1999, s. 170–73.
 
169.
Kane NM, Curry SH, Butler SR, Cummins BH. Electrophysiological indicator of awakening from coma. Lancet, 1993; 341(8846): 688.
 
170.
Kane NM, Curry SH, Rowlands CA, Manara AR, Lewis T, Moss T i wsp. Event-related potentials – neurophysiological tools for predicting emergence and early outcome from traumatic coma. Intensive Care Med, 1996; 22(1): 39–46.
 
171.
Sallinen M, Kaartinen J, Lyytinen H. Is the appearance of mismatch negativity during stage 2 sleep related to the elicitation of K-complex? Electroencephalogr Clin Neurophysiol, 1994; 91(2): 140–48.
 
172.
Picton TW, Alain C, Otten L, Ritter W, Achim A. Mismatch negativity: different water in the same river. Audiol Neurootol, 2000; 5(3–4): 111–39.
 
173.
Leppänen PH, Lyytinen H. Auditory event-related potentials in the study of developmental language-related disorders. Audiol Neurootol, 1997; 2(5): 308–40.
 
174.
Csépe V, Molnár M. Towards the possible clinical application of the mismatch negativity component of event-related potentials. Audiol Neurootol, 1997; 2(5): 354–69.
 
175.
Kraus N, McGee TJ. Mismatch negativity in the assessment of central auditory function. Am J Audiol, 1994; 3(2): 39–51.
 
176.
Oates PA, Kurtzberg D, Stapells DR. Effects of sensorineural hearing loss on cortical event-related potential and behavioral measures of speech-sound processing. Ear Hear, 2002; 23(5): 399–415.
 
177.
Azizian A, Freitas AL, Parvaz MA, Squires NK. Beware misleading cues: perceptual similarity modulates the N2/P3 complex. Psychophysiology, 2006; 43(3): 253–60.
 
178.
Gajewski PD, Stoerig P, Falkenstein M. ERP—Correlates of response selection in a response conflict paradigm. Brain Res, 2008; 1189: 127–34.
 
179.
Koravand A, Jutras B, Lassonde M. Cortical Auditory Evoked Potentials in Children with a Hearing Loss: A Pilot Study. Int J Pediatr, 2012; 2012: e250254.
 
180.
Papaliagkas V, Kimiskidis V, Tsolaki M, Anogianakis G. Usefulness of event-related potentials in the assessment of mild cognitive impairment. BMC Neurosci, 2008; 9: 107.
 
181.
Miyata A, Matsunaga H, Kiriike N, Iwasaki Y, Takei Y, Yamagami S. Event-related potentials in patients with obsessive-compulsive disorder. Psychiatry Clin Neurosci, 1998; 52(5): 513–18.
 
182.
Urretavizcaya M, Moreno I, Benlloch L, Cardoner N, Serrallonga J, Menchón JM i wsp. Auditory event-related potentials in 50 melancholic patients: increased N100, N200 and P300 latencies and diminished P300 amplitude. J Affect Disord, 2003; 74(3): 293–97.
 
183.
Zgorzalewicz M. [Long latency auditory evoked potentials in schoolchildren and adolescents with epilepsy]. Przegląd Lek, 2006; 63 Suppl 1: 8–13.
 
184.
Wang R, Dong Z, Chen X, Zhang M, Yang F, Zhang X i wsp. Gender differences of cognitive function in migraine patients: evidence from event-related potentials using the oddball paradigm. J Headache Pain, 2014; 15: 6.
 
185.
Fisher T, Aharon-Peretz J, Pratt H. Dis-regulation of response inhibition in adult Attention Deficit Hyperactivity Disorder (ADHD): an ERP study. Clin Neurophysiol Off J Int Fed Clin Neurophysiol, 2011; 122(12): 2390–99.
 
186.
Fischer M, Barkley RA, Smallish L, Fletcher K. Executive functioning in hyperactive children as young adults: attention, inhibition, response perseveration, and the impact of comorbidity. Dev Neuropsychol, 2005; 27(1): 107–33.
 
187.
Lijffijt M, Kenemans JL, Verbaten MN, Engeland H van. A meta-analytic review of stopping performance in attention-deficit/hyperactivity disorder: deficient inhibitory motor control? J Abnorm Psychol, 2005; 114(2): 216–22.
 
188.
Kaufmann L, Zieren N, Zotter S, Karall D, Scholl-Bürgi S, Haberlandt E i wsp. Predictive validity of attentional functions in differentiating children with and without ADHD: a componential analysis. Dev Med Child Neurol, 2010; 52(4): 371–8.
 
189.
Metin B, Roeyers H, Wiersema JR, Meere J van der, Sonuga-Barke E. A Meta-Analytic Study of Event Rate Effects on Go/ No-Go Performance in Attention-Deficit/Hyperactivity Disorder. Biol Psychiatry, 2012; 72(12): 990–96.
 
190.
Nigg JT. Is ADHD a disinhibitory disorder? Psychol Bull, 2001; 127(5): 571–98.
 
191.
Bezdjian S, Baker LA, Lozano DI, Raine A. Assessing inattention and impulsivity in children during the Go/NoGo task. Br J Dev Psychol, 2009; 27(2): 365–83.
 
192.
Tye C, Asherson P, Ashwood KL, Azadi B, Bolton P, McLoughlin G. Attention and inhibition in children with ASD, ADHD and co-morbid ASD + ADHD: an event-related potential study. Psychol Med, 2014; 44(5): 1101–16.
 
193.
Chermak GD, Tucker E, Seikel JA. Behavioral characteristics of auditory processing disorder and attention-deficit hyperactivity disorder: predominantly inattentive type. J Am Acad Audiol, 2002; 13(6): 332–8.
 
194.
Sparreboom M, Beynon AJ, Snik AFM, Mylanus EAM. Auditory cortical maturation in children with sequential bilateral cochlear implants. Otol Neurotol Off Publ Am Otol Soc Am Neurotol Soc Eur Acad Otol Neurotol, 2014; 35(1): 35–42.
 
195.
Schmitt BM, Münte TF, Kutas M. Electrophysiological estimates of the time course of semantic and phonological encoding during implicit picture naming. Psychophysiology, 2000; 37(4): 473–84.
 
196.
Polich J, Ehlers CL, Otis S, Mandell AJ, Bloom FE. P300 latency reflects the degree of cognitive decline in dementing illness. Electroencephalogr Clin Neurophysiol, 1986; 63(2): 138–44.
 
197.
Polich J, Corey-Bloom J. Alzheimer’s disease and P300: review and evaluation of task and modality. Curr Alzheimer Res, 2005; 2(5): 515–25.
 
198.
Matas CG, Matas SL de A, Oliveira CRS de, Gonçalves IC. Auditory evoked potentials and multiple sclerosis. Arq Neuropsiquiatr, 2010; 68(4): 528–34.
 
199.
Matas CG, Gonçalves IC, Magliaro FCL. Audiologic and electrophysiologic evaluation in children with psychiatric disorders. Braz J Otorhinolaryngol, 2009; 75(1): 130–38.
 
200.
Müller TJ, Kalus P, Strik WK. The neurophysiological meaning of auditory P300 in subtypes of schizophrenia. World J Biol Psychiatry Off J World Fed Soc Biol Psychiatry, 2001; 2(1): 9–17.
 
201.
Salamat MT, McPherson DL. Interactions among variables in the P300 response to a continuous performance task. J Am Acad Audiol, 1999; 10(7): 379–87.
 
202.
Hurley RM, Musiek FE. Effectiveness of three central auditory processing (CAP) tests in identifying cerebral lesions. J Am Acad Audiol, 1997; 8: 257–62.
 
203.
Hutchinson KM, McGill DJ. The efficacy of utilizing the P300 as a measure of auditory deprivation in monaurally aided profoundly hearing-impaired children. Scand Audiol, 1997; 26(3): 177–85.
 
204.
Kileny PR. Use of electrophysiologic measures in the management of children with cochlear implants: brainstem, middle latency, and cognitive (P300) responses. Am J Otol, 1991; 12 Suppl: 37–42; 43–47.
 
205.
Jordan K, Schmidt A, Plotz K, Specht H Von, Begall K, Roth N i wsp. Auditory event-related potentials in post-and prelingually deaf cochlear implant recipients. Am J Otol, 1997; 18(6 Suppl): 116–17.
 
206.
Micco AG, Kraus N, Koch DB, McGee TJ, Carrell TD, Sharma A i wsp. Speech-evoked cognitive P300 potentials in cochlear implant recipients. Otol Neurotol, 1995; 16(4): 514–20.
 
207.
Moore DR, Ferguson MA, Edmondson-Jones AM, Ratib S, Riley A. Nature of auditory processing disorder in children. Pediatrics, 2010; 126(2): e382–90.
 
208.
Moore DR. The diagnosis and management of auditory processing disorder. Lang Speech Hear Serv Sch, 2011; 42(3): 303.
 
209.
Moore DR. Listening difficulties in children: Bottom-up and top-down contributions. J Commun Disord, 2012.
 
210.
Jirsa RE. The clinical utility of the P3 AERP in children with auditory processing disorders. J Speech Hear Res, 1992; 35(4): 903–12.
 
211.
Byrne JM, Dywan CA, Connolly JF. An innovative method to assess the receptive vocabulary of children with cerebral palsy using event-related brain potentials. J Clin Exp Neuropsychol, 1995; 17(1): 9–19.
 
212.
Byrne JM, Connolly JF, MacLean SE, Dooley JM, Gordon KE, Beattie TL. Brain activity and language assessment using event-related potentials: Development of a clinical protocol. Dev Med Child Neurol, 1999; 41(11): 740–47.
 
213.
Arcy RCN D’, Marchand Y, Eskes GA, Harrison ER, Phillips SJ, Major A i wsp. Electrophysiological assessment of language function following stroke. Clin Neurophysiol Off J Int Fed Clin Neurophysiol, 2003; 114(4): 662–72.
 
214.
Kojima T, Kaga K. Auditory lexical-semantic processing impairments in aphasic patients reflected in event-related potentials (N400). Auris Nasus Larynx, 2003; 30(4): 369–78.
 
215.
Kutas M, Hillyard SA. Event-related brain potentials to grammatical errors and semantic anomalies. Mem Cognit, 1983; 11(5): 539–50.